## Columbus City Utilities Goes Green



## Sustainability Impacted Decisions for New Wastewater Treatment Facility

Mark Sneve, Strand Associates, Inc. June 5, 2008



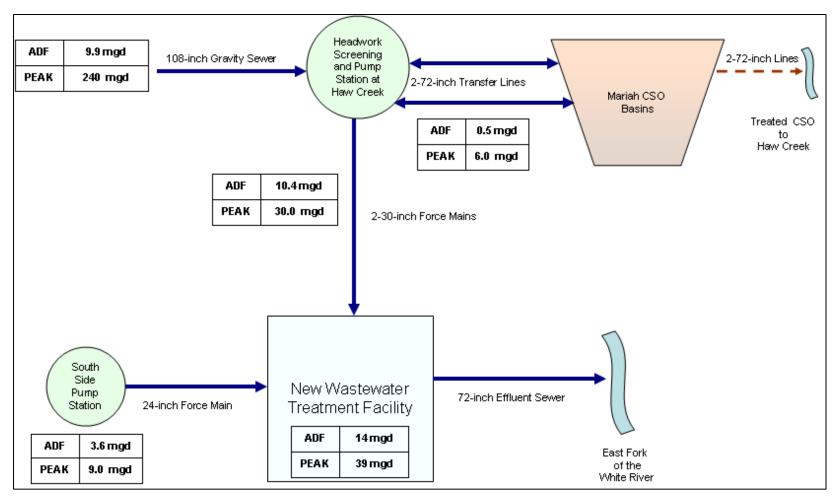




## **Project Background**

#### New WWTP Driven by:

- Outdated WWTP
- Desire to reconstruct at remote location
- Planned reuse of existing site


#### Preliminary Engineering Report

- Sized WWTP
- Selected Processes
- Gained Acceptance and Approval





## **Overall CCU System Schematic**



ADF - Average Daily Flow





## **Sustainability Considerations in PER**

- Owner Input Sought
- Robust Alternatives Evaluation
- Sustainability Criteria
  - Energy Use
  - Biosolids Use and Quantity
  - Odor Control
  - Carbon Footprint





### **Alternatives Evaluated**

| Alternative                                                                     | Process Description                                                               |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1A                                                                              | Activated Sludge with Primaries, Anaerobic Digestion, and Dewatering              |
| 1B                                                                              | Activated Sludge with Primaries, Anaerobic Digestion, and Liquid Land Application |
| Activated Sludge without Primaries, Cannibal™, Aerobi Digestion, and Dewatering |                                                                                   |
| 2B                                                                              | Same as Alternative 2A with the addition of Composting                            |
| 3A                                                                              | Oxidation Ditch without Primaries, Aerobic Digestion, and Dewatering              |
| 3B                                                                              | Oxidation Ditch without Primaries, Cannibal™, Aerobic Digestion, and Dewatering   |
| 4                                                                               | Activated Sludge with Primaries, No Digestion, and Dewatering                     |
| 5                                                                               | Activated Sludge without Primaries, and Dewatering of WAS                         |



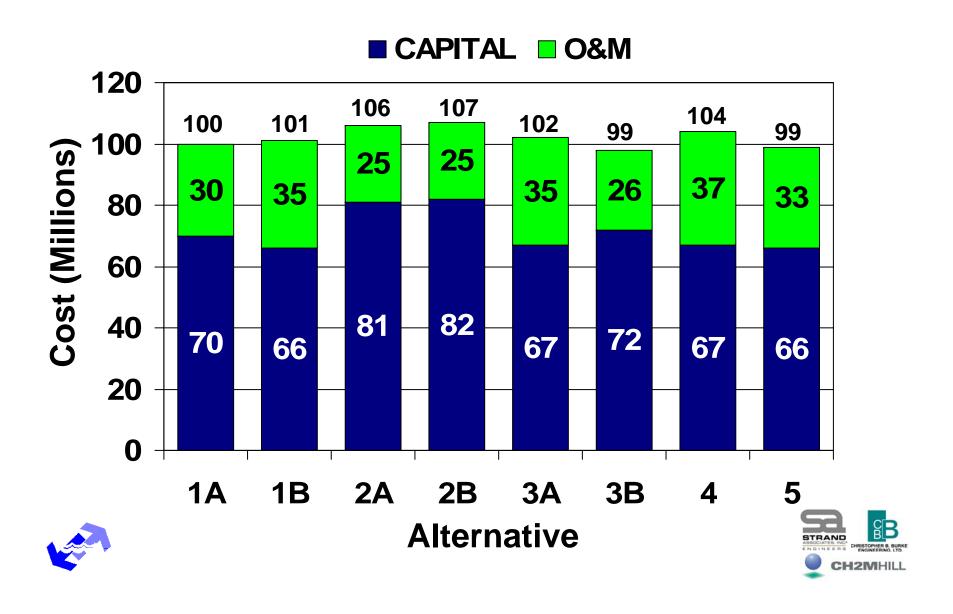


## **Process Alternatives Analysis**

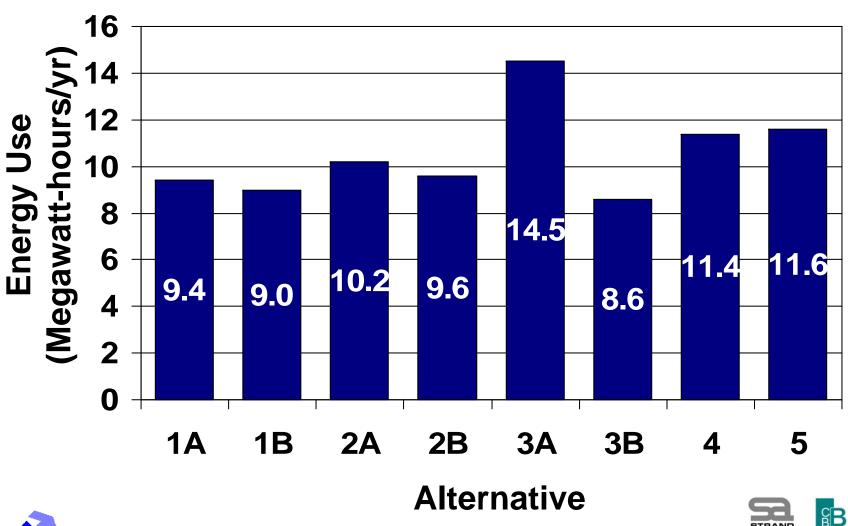
|                                          |    |    | A  | Alterna | ative |    |   |   |
|------------------------------------------|----|----|----|---------|-------|----|---|---|
| Processes that Vary between Alternatives | 1A | 1B | 2A | 2B      | 3A    | 3B | 4 | 5 |
| Primary Clarifiers                       | Х  | Х  |    |         |       |    | Х |   |
| Conventional Activated Sludge Tanks      | Х  | Х  | Х  | Х       |       |    | Х | X |
| Oxidation Ditch                          |    |    |    |         | Х     | Х  |   |   |
| Cannibal <sup>TM</sup> Process           |    |    | Х  | Х       |       | Х  |   |   |
| Anaerobic Digesters                      | Х  | Х  |    |         |       |    |   |   |
| Aerobic Digesters                        |    |    | Х  | Х       | Х     | Х  |   |   |
| Sludge Thickening                        | Х  | Х  | Х  | Х       | Х     | Х  |   |   |
| Dewatering Centrifuges                   | Х  |    | Х  | Х       | Х     | Х  | Х | Х |
| Compost Facilities                       |    |    |    | Χ       |       |    |   |   |





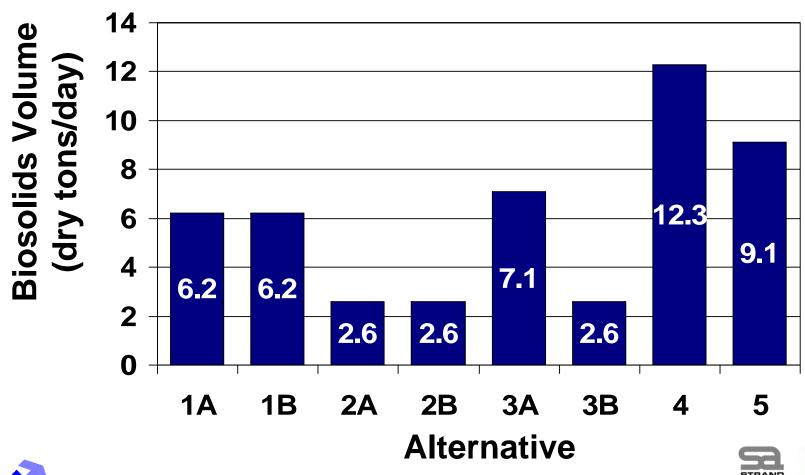

#### **Evaluation of Alternatives**

- Conduct workshop with CCU Management and Staff
- Developed "Short List" of Process Alternatives to Evaluate (8 Alternatives Evaluated)
- Developed Criteria Rankings of Each Alternative
- Recommend Selected Plan






## **Present Worth Cost Comparison**




## **Energy Use Predicts Carbon Footprint**





## Predicted Biosolids Volume.... ....the tail that wags the dog





## **Qualitative Analysis of Alternatives**

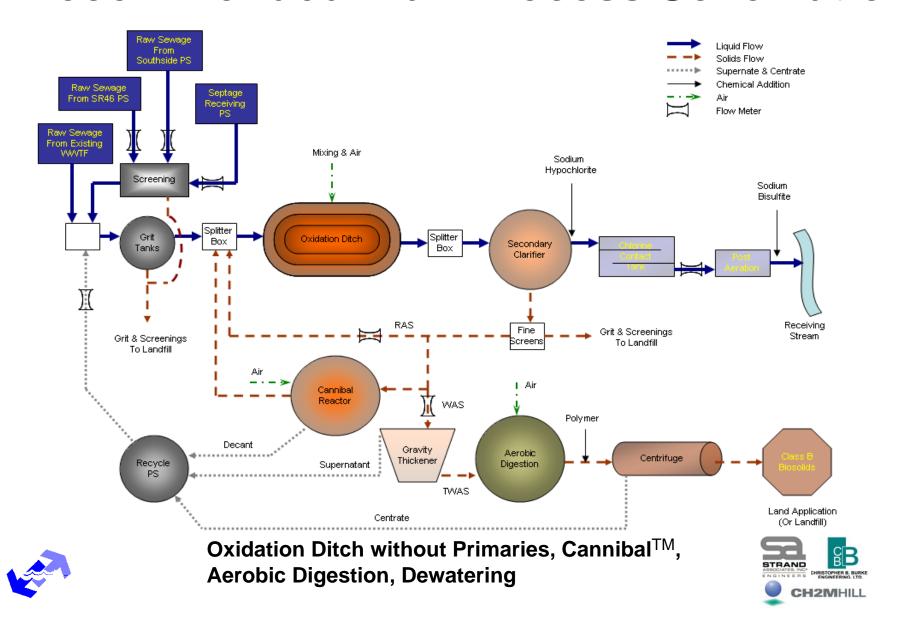
| Criterion (Rank 1-10)    | Weight |
|--------------------------|--------|
| Regulatory Compliance    | 1.0    |
| Contingency Capacity     | 0.9    |
| Quality of Biosolids     | 0.7    |
| Odor Control             | 1.0    |
| Worker Health and Safety | 1.0    |
| Expandability            | 0.7    |
| O&M Complexity           | 0.9    |
| Volume Reduction         | 0.7    |
| Stakeholder Interests    | 0.8    |
| Public Acceptance        | 1.0    |
| Carbon Footprint         | 0.5    |
| Process Risk             | 1.0    |

| Benefit<br>Score |      |  |  |  |
|------------------|------|--|--|--|
| 1A               | 66.0 |  |  |  |
| 1B               | 64.4 |  |  |  |
| 2A               | 68.9 |  |  |  |
| 2B               | 69.9 |  |  |  |
| 3A               | 70.7 |  |  |  |
| 3B               | 69.9 |  |  |  |
| 4                | 56.9 |  |  |  |
| 5                | 56.9 |  |  |  |

| BENEFIT/COST<br>COMPARISON1A0.661B0.642A0.652B0.653A0.693B0.7140.5550.58 |    |      |  |  |  |
|--------------------------------------------------------------------------|----|------|--|--|--|
| 1B 0.64 2A 0.65 2B 0.65 3A 0.69 3B 0.71 4 0.55                           |    |      |  |  |  |
| 2A 0.65 2B 0.65 3A 0.69 3B 0.71 4 0.55                                   | 1A | 0.66 |  |  |  |
| 2B 0.65 3A 0.69 3B 0.71 4 0.55                                           | 1B | 0.64 |  |  |  |
| 3A 0.69 3B 0.71 4 0.55                                                   | 2A | 0.65 |  |  |  |
| <b>3B 0.71</b> 4 0.55                                                    | 2B | 0.65 |  |  |  |
| 4 0.55                                                                   | 3A | 0.69 |  |  |  |
|                                                                          | 3B | 0.71 |  |  |  |
| 5 0.58                                                                   | 4  | 0.55 |  |  |  |
|                                                                          | 5  | 0.58 |  |  |  |






#### **Recommended Alternative**

- Alternative 3B is the most Economical Alternative
  - Oxidation Ditch without Primaries
  - Cannibal<sup>TM</sup>
  - Aerobic Digestion
  - Dewatering
- Alternative 3B will result in the lowest amount of Biosolids produced.
  - Biosolids handling accounts for 27% of existing O&M Costs





#### Recommended Plan Process Schematic



# Developing "Green and Sustainable Design" Incentives

- Approximately 28% of overall construction costs implement "green design" and may qualify for SRF loan interest rate savings
  - Cannibal<sup>TM</sup> System,
  - Energy Savings in Operation of Ditch
  - LEED Certified Building,
  - Biological Odor Control and
  - portions of other processes.
- This interest rate reduction can provide nearly \$1.3
   Million in savings over the 20 Year Life of the SRF Loan





#### **ACKNOWLEDGMENTS**



Keith Reeves, P.E., Director Gary Pugh, Superintendent



Mike Meyer, P.E. Kenny DeLap, II



David Hackworth, P.E.

Robert Forbes, P.E.

Bruce Johnson, P.E.



Dave Hayward, P.E.